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Abstract

Triangular discrimination, Jensen-Shannon divergence, and
the square of the Hellinger distance, are popular distance
functions for mixture models, and are known to be similar.
Here we expound upon their equivalence in terms of their
functional forms after transformations, factorizations, and se-
ries expansions, and in terms of the geometry of their con-
tours. The ratio between these distances is nearly flat for mod-
est ratios of point coordinates, up to about 4:1. Beyond that
the functions increase at different rates. We include deriva-
tions of ratio bounds, and some new difference bounds. We
provide some constructions that nearly achieve the worst-
cases. These help us understand when the different func-
tions would give different orderings to the distances between
points.
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Introduction

Mixture models are ubiquitous in statistics and their
applications. Mixture models express quantities whose
components are positive and sum to one. They con-
veniently express a discrete probability distribution for
exclusion settings, where probabilities sum to one; see
Deza and Deza [6] for a formal definition. They also ex-
press fractions of a whole, e.g. they frequently arise af-
ter normalization. They are geometrically equivalent to
points lying on a regular simplex. See Appendix “Data
Model and Application Context” for how a mixture
model arises in one information application.

A distance function measures how close two points
are to one another. In clustering applications, points
that are close to each other based on this distance are
grouped together. Nearest-neighbors often play a spe-
cial role. For a given point, different distance functions
may give different orderings to the other points, and
different clusters may result.

Triangular discrimination, Jensen-Shannon divergence,
and the square of the Hellinger distance, are popular
distance functions. There are many others [6], but we
focus on these three because they are known to be sim-

ilar. The literature contains some relations, but these
provide limited insight for the following reasons. The
prior focus is on the most extreme results, worst case
bounds, the maximum and minimum ratio of one dis-
tance to another. These are often given as a list of al-
gebraic inequalities, without proof or even hints at rea-
sons why the inequalities hold. We are interested in
understanding which sets of points give rise to these
extremes, and what we should expect in intermediate
cases. We are interested in the geometry of the map-
pings underlying the functions, and their series expan-
sions. These provide insight into the form and relation
of the functions across all cases. Factorizations provides
a simplification and parameterization of the bounds.
Section “Differences Between 4s, JS and H2

s ” provides
some new bounds on the difference between functions.

These results provide some underpinnings for answer-
ing the question, “In what situations does it matter
which distance function you choose?” using first prin-
ciples rather than anecdotal case studies. That is, we
explore when different distances would give different
answers, e.g. to nearest-neighbor queries or constant-
value contour constructions. One value of our exposi-
tion is the algebraic decomposition of the functions into
products of functions of one variable, especially valu-
able for high dimensions. Some of these bounds appear
to be well known, but we hope this is a useful geomet-
ric description, systematic treatment with proofs, and
parameterization of these bounds.

Model

Mixture Model Geometry

Geometrically, mixture model points lie on a regular
simplex T; see Figure 1. Algebraically, these are vectors
with positive entries which sum to one. Let K denote
the dimension of the model. Let x denote a data point,
with xk the kth coordinate of x. Then

T =

{
x :

K

∑
k=1

xk = 1, and 1 ≥ xk ≥ 0

}
.
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Fig. 1 Left, the domain of mixture models is the simplex T, the unit sphere is S, and the non-negative part of unit sphere is S+ . This figure for

two-dimensions with coordinate axes 1 and 2. Center, point x on T projected to S+ under normalization (Euclidean) and square root (Hellinger).
Right, three-dimensional simplex T and S+ (cut-away).

T is the convex hull of the RK elementary vectors ek =

{x : xk = 1, xj 6=k = 0}, ∀k ∈ [1, K].

For Hellinger and Euclidean (Cosine) distances, we
map points from T to the unit K-sphere S, specifically
the closed section S+ of it bounded by the positive co-
ordinate planes; see Figure 1. Since zero coordinates
map to zero coordinates, all the vertices, edges, etc. of
T map to the expected vertices, edges, etc. of S+. That
is, if we treat T and S+ as simplicial complexes, with
subsimplices TI and S+I with xi∈I = 0 for all indica-
tor sets of indices I, then both maps are isomorphisms
from sub-simplex TI to the expected sub-simplex S+I .

Algebraic methods such as non-negative matrix factor-
ization produces output on S+. The range of some other
algebraic methods, such as LSA after normalization, is
all of S. The cosine similarity distance is naturally de-
fined on all of S.

T also models all probability distributions of a random
variable over a discrete set of events. Each dimension
corresponds to a discrete event, and a point’s (a distri-
bution’s) coordinate value the likelihood of the event in
that distribution [6].

Distance Properties

We desire distances D that satisfy these useful properties:

0. Unique Zero: D(x, y) ≥ 0, and D(x, y) = 0 if and
only if x = y.

1. Max 1: D ≤ 1 and D(x, y) = 1 for some x, y ∈ T.

2. Symmetry: D(x, y) = D(y, x).

3. Triangle Inequality: D(x, z) ≤ D(x, y) + D(y, z).

4. Orthogonal Max: D(x, y) = 1 if x · y = 0.

(Properties 0–3 are numbered as a reminder to their
meaning.) These properties are desired for a variety
of practical, theoretical, and historical reasons. Proper-
ties Unique Zero, Symmetry and Triangle Inequality
are required for a distance to be a metric. Many of our
distances satisfy all these except for Triangle Inequal-
ity; such distances are often called “distance statistics”
to distinguish them [6]. Property Max 1 means we want
distances to be bounded; we scale them to have a con-
sistent maximum to facilitate comparisons. This is not
required for metrics. Scaled distances are subscripted
by s.

Orthogonal Max implies that the distances between
points on disjoint sub-simplices of T are all equal. This
is desirable from a mixture model perspective because
such points are maximally independent, hence their
distances should be the largest possible and equivalent.

For many ideas that originally emerged without some
of these properties, the statistics community has devel-
oped versions which do. There are several interesting
and popular pre-metrics that satisfy some of these. For
example, Kullback-Leibler [14] lacks symmetry, but sev-
eral versions of it have been “fixed.”

Inter-Distance Properties

Two distances D and F have (are)

• Bounded Difference: if c1 ≥ F(x, y)− D(x, y) ≥ 0
for some positive constant c1 < 1.

• Bounded Ratio: if F(x, y) ≥ D(x, y) ≥ c2F(x, y) for
some positive constant c2.

• Order Preserving: if D(x, y) < D(x, z) ⇐⇒
F(x, y) < F(x, z).
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For our distances, one of them is always greater than
the other, so considering the absolute value of the dif-
ference, i.e. |F(x, y) − D(x, y)|, provides no additional
insight.

These properties are a way of relating one function
to another. For example, Order Preserving functions
will produce the same k-nearest neighbor clusterings,
provided the analogous distance thresholds are picked.
Cosine similarity interprets points as vectors from the
origin, and measures the cosine of the angle between
two of them. If points are first normalized to S, cosine
similarity and Euclidean distance are Order Preserving,
because the cosine of the angle and the chord length be-
tween the points are both monotonic in the angle.

If D and F satisfy Max 1, then Bounded Ratio implies
Bounded Difference with c1 = 1− c2, since F − D =

F(1− D/F) ≤ 1(1− c2). But in the following we often
show a smaller constant c1.

Distance Relation Summary

We define distances 4s, JS, and H2
s . We investigate

them throughout the rest of the paper. Figure 2 summa-
rizes their relationships. Motivated by the same desire
for a common framework for comparison, Gibbs and Su
[8] provides a similar diagram.
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Fig. 2 Distance metric taxonomy. Given our scaling, the top line shows

a strict ordering of the function values. Further, equality is achieved

only at zero and one and we show non-trivial bounded ratio and

difference. The bottom two lines show that each of the three

functions can be factored into those four expressions, but with

different Q and Z functions, and different an and bn coefficients.

Here 4s is scaled triangular discrimination, a variant
of Chi-squared, χ2. JS is Jensen-Shannon (a.k.a. half
the Jeffreys Divergence), a form of Kullback-Leibler. H2

s
is scaled and squared Hellinger, a variant of scaled
Hellinger, Hs, and raw Hellinger, H. The inequalities
denote componentwise inequality, plus bounded ratio
and bounded difference. The equations below the box
for 4s, JS, and H2

s denote alternative functional forms
derived from factorization and series expansions.

These satisfy all of our useful properties, except for
Triangle Inequality. Raw H does satisfy Triangle In-

equality. Figure 3 illustrates a few interesting examples
of distance functions in three dimensions.

These three are relative distances, meaning they depend
on the ratio of the pair of points’ coordinates. Specifi-
cally, we show that each of the4s, JS, and H2

s distances
(generically D) can be neatly factored into

D(x, y) =
∥∥∥∥ p

2
Q(q)

∥∥∥∥
1
=

∥∥∥∥u
2

Z(z)
∥∥∥∥

1
= 1−

∥∥∥∥u
2

W(z)
∥∥∥∥

1
.

Here p = x + y is plus, d = x − y is difference and
q = d/p is quotient; also u = max(x, y), v = min(x, y),
and z = v/u. Of course the Q, Z and W functions are
different for each distance function D, so we will sub-
script them by the particular D. Throughout this paper
all operations on vectors (e.g. d/p) are applied com-
ponentwise. Often the subscripts will be dropped on
equations, usually this will still mean that the equality
holds componentwise; instead we will explicitly men-
tion it when equality only holds in the aggregate after
taking norms. ‖ · ‖1 denotes the standard L1 vector 1-
norm, and is not a componentwise operation; and | · |
denotes componentwise absolute value.

Moreover, we will show that all the Q are similar: com-
ponentwise

Q(q) =
∞

∑
n=1

anq2n, 1 ≥ an > 0,

an rapidly decreasing,and Q(0) = 0, Q(1) = 1.

All the Z are also similar: componentwise

Z(z) =
∞

∑
n=2

bn(1− z)n, 1 ≥ bn > 0,

bn decreasing, and Z(0) = 1, Z(1) = 0.

Z(z) = 1 + z −W(z) with Z and W monotonic and
W(0) = 1, W(1) = 2. For each of 4s, JS, and H2

s , the
D, p

2 Q, and u
2 Z functional forms are all componentwise

equal; in contrast D = 1 − ‖ u
2 W‖1 only holds in ag-

gregate after taking the 1-norm, i.e. Dk 6= 1−Wk nor
1/K−Wk in general.

In Section “Hellinger” we briefly contrast Hellinger to
Eus, the Euclidean distance between mixture model
points after they have been projected to the unit sphere.

Functions of the form D f (x, y) = ‖x f (x/y)‖1 for con-
vex functions f are known as f-divergences. They were
largely developed by Csiszár [5]. Dragomir [7] pro-
vides many theorems about them, including noting that
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our family of functions are f-divergences. Jain and
Srivastava [12] provides some symmetric variants of f-
divergence distances, including our triangular discrim-
ination.

In particular, we have componentwise D(x, y) =

xD(1, x/y) = yD(y/x, 1), hence Z(z) = D(1, z) =

D(z, 1). Similarly we show Q(q) = D(1 + q, 1 − q) =

D(1 − q, 1 + q). We provide a simple geometric inter-
pretation of these forms using similar triangles in Sec-
tion “Functions of p and q”, Figure 7.

Distance Definitions

Triangular Discrimination, 4s

The definition of the venerable Chi-Squared Test statis-

tic [17] is χ2 = ∑ (o−e)2

e where o is the observed value
and e is the expected value.

Most authors take o and e to be mixture model points,
yielding χ2(x, y) = ‖(x− y)2/y‖1. Alternatively, e
could be taken to be the average of all of the points,
or the simplex center, which would yield a univariate
measure.

We fix the asymmetry to obtain the scaled triangular
discrimination:

4s =
1
2

K

∑
k=1

(xk − yk)
2

xk + yk
=

1
2

∥∥∥∥∥ (x− y)2

x + y

∥∥∥∥∥
1

=
1
2

∥∥∥∥∥d2

p

∥∥∥∥∥
1

.

Another derivation of 4s is to assume mixture model
points are taken from the same population, so the ex-
pected value is the average of the two points. That is
4s = χ2(x, (x + y)/2). For continuity the kth term of
the sum is defined to be 0 if xk + yk = 0.

We use this simple measure because it turns out to fit
in the same geometric family as Jensen-Shannon and
Hellinger-squared.

4s obviously satisfies properties Unique Zero and
Symmetry. Any term where yk = 0 reduces to xk, so
Max 1 and Orthogonal Max hold. (The “symmetric χ2-
measure” [6] is a simple linear scaling of our 4s that
does not satisfy Max 1.)

But 4s is too convex, in the sense that 4s(x, y) �
24s (x, x/2 + y/2), and does not satisfy Triangle In-
equality even when restricted to mixture models. E.g.
x = [1, 0], z = [0, 1] and y = [1/2, 1/2] has 4s(x, y) =

4s(y, z) = 1/3 and 4s(x, z) = 1. Normalizing points
so that they lie on the unit sphere S+ first helps make
the function less convex, but not enough: e.g. if y =

[1, 1]/
√

2 then 4s(x, y) = 0.379.

Jensen-Shannon Divergence

One information theory approach to distance is based
on entropy and divergence. The derivation starts with
the Kullback-Leibler measure, KL, then modifies it for
our useful properties.

KL(x, y) =
∥∥x log2(x/y)

∥∥
1

KL is non-symmetric in x and y; adding symmetry de-
fines the Jeffrey Divergence,

J(x, y) =
∥∥x log2(x/y) + y log2(y/x)

∥∥
1

=
∥∥(x− y) log2(x/y)

∥∥
1 . Despite w log w being reason-

ably well behaved near zero, having independent quan-
tities inside the logs means Jk is unbounded for xk = 0
xor yk = 0. Moreover, if xk = 0, it doesn’t matter what
value yk > 0 has, the k term always contributes the
same amount, infinity. Indeed, it doesn’t matter what
any of the other yj 6=k or xj 6=k terms are! To fix this, we
replace the denominator in the logs by the average of x
and y:

JS = JSs =
1
2

∥∥∥∥∥x log2
2x

x + y
+ y log2

2y
x + y

∥∥∥∥∥
1

.

To make JS continuous xk log2
2xk

xk+yk
≡ 0 for xk = 0,

since limw→0 w log2 w = 0.

This is a measure of relative distance, the difference
between small component values is accentuated non-
linearly; see Figure 4 left. The constant factors inside
the logs were chosen so that JSk = xk/2 for yk = 0,
which provides Orthogonal Max and Max 1. If yk = xk
then log2(1) = 0 which verifies Unique Zero. (It may
not be obvious that JS ≥ 0, but it is, and can be seen
from some stronger results we prove later.) Symmetry
holds by the symmetry of the functional form. A gen-
eralization [6] is to use a weighted average of x and y:
JSα = αKL(x, αx + (1− αy)) + (1− α)KL(y, αx + (1−
αy)). JSα does not satisfy Symmetry for α 6= 1/2.

JS does not satisfy Triangle Inequality, and is not fixed
by normalizing the points to the sphere. This can be
verified using the same easy points as for 4s. Indeed,
JS is even more convex than 4s, as amplified in Sec-
tion “Comparisons”.

Euclidean

The well-known Lp (order-p Minkowski) distances

are Lp(x, y) =
(
∑ |xk − yk|p

)1/p . Here Lp,u(x, y) =

Lp(x/||x||p, y/||y||p) measures the distance between

4
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3-dimensional mixture model distances using Euclideanu (yellow + black contours), Hellingers (blue) and JSs (red)

(0,0,1)

(0,1,0)

(1,0,0)

Distances 
from (.89,.1,.01)

Fig. 3 Comparison of Eus , Hellinger, and JSs distances on 3d mixture models. Note the similarity between the contour lines for Hs and JSs , and how

they contrast with those of Eu in black. Bottom figures: the red arrow indicates the position of the point (0.89,.1,.01). Note the steep slope for Hs

and JSs as the line (1, 0, 0), (0, 0, 1) is approached, indicated by the blue and red “walls” on the edges of their graphs, and their contours curving

sharply towards (0.89,.1,.01).

the standard normalizations of x and y onto the sphere
S. L2,u = Eu(x, y) is the familiar Euclidean distance.
Another common distance function, cosine similarity,
is simply E2

u(x, y) when restricted to mixture models.
Hellinger can be viewed as Euclidean distance after a
peculiar geometric mapping.

Hellinger

Our Hellinger distance is a discrete form of the
Hellinger integral [10] defined for more general spaces.
Its use and form for our modern context was described
by Blei and Lafferty [3].

H2 =
K

∑
k=1

(
√

xk −
√

yk)
2

H2 means squaring after the sum, not componentwise:

H =
(

∑K
k=1(
√

xk −
√

yk)
2
)1/2

.

We normalize H by a constant factor for property Max
1,

Hs =
H√

2
.

We observe that Hellinger (H) projects points from the
simplex T to the spherical section S+ using the compo-
nentwise square root transformation, then takes stan-
dard Euclidean distance, which is the chord length be-
tween transformed points. This is trivial but appar-
ently not the way those using it for mixture models
think about it. This also constitutes a simple geomet-
ric proof that H satisfies Triangle Inequality. The
usual vector 2-norm normalization x/‖x‖2 also takes
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Δs (green) ≥ JSs(red) vs. (x-y) for (x+y)=c
Δs (blue) ≥ JSs(blue) vs. (x-y) for x=1 or y=0

(x-y)

di
st

an
ce

JSs surface, contour lines, and x+y=c lines

x

y

\TDs\

Fig. 4 Left: one-dimensional JS. Right: comparison of the one-dimensional 4s and JS; for constant x + y lines, 4s ≥ JS. Both plots range over the

square. The square is the domain of each component when K > 1.

points to the sphere but is significantly different, e.g.
it is a linear scaling of all components. When going
to the sphere, Hellinger expands straight-line-distances
near the boundary of T, where ratios of components
are highest, whereas normalization modestly expands
straight-line-distances near the center of T. Both map
the same sub-simplices of T to the obvious subsim-
plices of S+, and both maps agree at sub-simplex cen-
ters. Some bounds on the difference of these projections
are known.

It is obvious that H satisfies properties Unique Zero
and Symmetry. Hs satisfies Orthogonal Max. The alge-
braic argument is that, for orthogonal x and y, xk = 0 iff
yk 6= 0, so ∑K

k=1(
√

xk −
√

yk)
2 = ∑K

k=1
√

xk
2 +
√

yk
2 = 2.

For a geometric argument, take
√

x as the north pole
of S, then an orthogonal

√
y lies on the equator; all

such point pairs are Euclidean-equidistant. Orthogo-
nal x and y are in disjoint sub-simplices of T; the same
holds for their projections onto S+.

Comparisons

Recall u = max(x, y) and v = min(x, y) with max and
min and other vector operations taken componentwise.
Also p = x + y = u + v and d = |x − y| = u − v and
q = d/p and z = v/u. For components where x = y =

0 define q = 1 and z = 0. Note u = (p + d)/2 and
v = (p− d)/2. For componentwise ranges we have p ∈
[0, 2] and d, q, u, v, x, y, z ∈ [0, 1]. We have inequalities
p ≥ d and u ≥ v.

Theorem 1 (f-divergences). For distances 4s, JS and H2
s

(generically D) and a ≥ 0, D(ax, ay) = aD(x, y) compo-
nentwise. This implies componentwise D(x, y) = u

2 Z(z)
and D(x, y) = p

2 Q(q) with Z(z) = 2D(1, z) and Q(q) =

D(1 + q, 1− q).

Proof. If u = 0 then x = y = 0 and p = 0. In this case it
is trivial to check D = 0 (Unique Zero) for each of the
three functions. So assume u > 0 and p > 0. Verifying
D(ax, ay) = aD(x, y) is a simple factorization exercise
for each function. It implies D(x, y) = xD(1, y/x) =

yD(x/y, 1). Consider each component in turn, and, by
symmetry, WLOG assume x ≥ y. Then xD(1, y/x) =

uD(1, z) and D(x, y) = (x + y)D(1/2 + (x− y)/(2(x +

y)), 1/2 − (x − y)/(2(x + y))) = pD((1 + q)/2, (1 −
q)/2). For our functions the restriction of the domain
to the unit square can be ignored, so we can factor
out the 1/2 which provides the compact expression
Q(q) = D(1 + q, 1− q).

What this means geometrically is straight-lines from the
origin to the x = 1 (or y = 1) curve map out the sur-
face of the one-dimensional distance functions over the
square; see Figure 7. The slope of each line is related to
the value of the Z-function (slope = Z(z)/

√
1 + z2) or

Q-function (slope = Q(q)
√

2/
√

1 + q2).

Functions of p and q
Here we examine the Q functions for each of4s, JS and
H2

s . Figure 8 illustrates various relationships between

6
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Fig. 5 Left: one-dimensional Hs . Right: comparison of the one-dimensional Hs and JSs . This provides little insight for higher dimensions, because

Hellinger takes the square root after summing all components.

Hs
2 surface, contour lines, and x+y=c lines

Δs(green) ≥ JSs(red) ≥ H2
s (blue) vs. (x-y)

for (x+y)=c, x=1, or y=0

(x-y)

y

x

Fig. 6 Left: one-dimensional H2
s . Right: comparison of the one-dimensional 4s , JS, and H2

s . In Section “Functions of p and q” we show that the family

of 4s , JS, H2
s triples of curves are all linear scalings (and truncations) of a single triple of curves, the plots of the Q functions. In

Section “Functions of u and z” we show that straight-lines from the origin to the x = 1 curve (the rightmost-edge of the left figure) map out the

surface. This x = 1 curve is the lower envelop of the curves on the right, and is the Z function.

them.
Theorem 2 (Q-functions). Componentwise

4s =
p
2

Q4(q), JS =
p
2

QJS(q) and H2
s =

p
2

QH(q)

where
Q4(q) = q2

QJS(q) =
1
2
(
(1 + q) log2(1 + q) + (1− q) log2(1− q)

)
QH(q) = 1−

√
1− q2

and, for convenience, we list

Q′4 = 2q
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geometrically: D(  ) = (r / r’) D(o) = (p/1) D(o) = p Q(q)/2

 

also works for p > 1

2
d

2
q

2
2

2
1

2
p

r

r′ 1
o′

o

labels are lengths of segments, except points o, o’

 

geometrically: D(  ) = (s / s’) D(o) = (u / 1) D(o) = u/2 Z(z)

z

0

1

1

0

r
r′′o

o′′

u
v

u
v

1

o

o′′
o′

2
d

2
q

2
2

2
1

2
p

z

1

0

0

z
zq

+
−

=
1
1

q
qz

+
−

=
1
1

Fig. 7 Left, graph of one-dimensional JS highlighting the iso-z = iso-q lines, and the Q- and Z-functions. Graphs for H2
s and 4s are similar. The

geometric interpretation of D(ax, ay) = aD(x, y) in Theorem 1 is that the constant-x/y curves are straight lines. Right top, planar view of the left

graph, showing additional iso-u and iso-p lines. JS is a linear scaling of the Z (or Q) curve along these iso lines. Right bottom, the distance at a

point o can be evaluated by translating it along its iso-z (iso-q) line to the Z (Q) curve. Geometrically, let | · | denote the straight-line distance from

a point to the left (0, 0) corner of the triangle in the plane. Then linear scaling along iso-q (iso-z) lines and similar triangles yields

D(o) = (|o|/|o′ |)D(o′) = (p/1)D(o′) = (p/2)Q(q) and D(o) = (|o|/|o′′ |)D(o′′) = (u/1)D(o′′) = (u/2)Z(z). (To clear up any confusion, the final 1/2 factor

appears because the K-dimensional distances (D) have an extra 1/2 normalization factor that the 1-dimensional distances do not, and we defined Z
and Q in terms of the 1-dimensional distances for illustration purposes in this figure.)

Q′JS =
1
2
(
log2(1 + q)− log2(1− q)

)
Q′H =

q√
1− q2

Component-wise equality holds in all of the above. This im-
plies equality after taking the 1-norm: 4s = ‖ p

2 Q4(q)‖1,
JS = ‖ p

2 QJS(q)‖1 and H2
s = ‖ p

2 QH(q)‖1.

Proof. Q4 is trivial. From Theorem 1, 2QJS = 2JS(1 +

q, 1 − q) = (1 + q) log2(1 + q) + (1 − q) log2(1 − q).
2Q′JS = log2(1 + q) + (1 + q)/((1 + q) log 2) + (1 −
q)/((1− q) log 2)− log2(1− q) = log2(1+ q)− log2(1−

q). From Theorem 1, QH =
(√

1 + q−
√

1− q
)2

/2 =(
1 + q + 1− q− 2

√
(1 + q)(1− q)

)
/2 = 1−

√
1− q2.

Remark 3 (linear scaling). All the D vs. d for p = pc (con-
stant) curves in Figure 4 and Figure 6 are linear 1/pc scal-
ings of the Q functions: D(x, y)/pc vs. (x − y)/pc ⇐⇒
Q(q) vs. q. For pc > 1 the functions are truncated at
q = 2/pc − 1.

Proof. This follows almost by definition: (x − y)/pc =

d/p = q and D/pc = pQ/pc = Q. Note the 1/2 fac-

tor is missing in the Q decomposition of D because the
one-dimensional distance functions plotted in the fig-
ures are normalized without it. The curves for pc > 1
are truncated at d = 2− pc ⇐⇒ q = 2/pc − 1 since
x ≤ 1 ⇒ 1 + y ≥ x + y = pc or y ≥ pc − 1, so
x− y ≤ x + 1− pc ≤ 2− pc.

Remark 4 (geometric Q). For a geometric interpretation
see Figure 7. The Q curve and all its translated scalings that
lie on the distance function are perpendicular to the p = 1
(x + y = 1) diagonal. In the figure, the following operations
can be observed geometrically. Considering point coordinates,
o = ((p + d)/2, (p − d)/2) and o′ = ((1 + q)/2, (1 −
q)/2) = o/p. Hence D(o) = pD(o′) = (p/2)Q(q). In the
same figure, the Z curve (Section “Functions of u and z”)
and all its translated scalings are perpendicular to the z = 0
axis, or the y = 0 axis if y < x.
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Fig. 8 Graphs of relationships between the Q functions.

JS and H2
s via Series in q

JS q-Series

Using log2(·) = ln(·)/ ln(2), and the expansion

ln(1 + r) = ∑∞
n=1

(−1)n+1rn

n , we get

2 ln 2QJS

= (1 + q)
∞

∑
n=1

(−1)n+1

n
qn − (1− q)

∞

∑
n=1

1
n
(q)n

Recombining like powers of q

=
∞

∑
n=1

(−1)n+1 − 1
n

qn +
∞

∑
n=1

(−1)n+1 + 1
n

qn+1

=
∞

∑
n=1

(−1)n+1 − 1
n

qn +
∞

∑
m=2

(−1)m + 1
m− 1

qm

=
∞

∑
n=2

(
(−1)n+1 − 1

n
+

(−1)n + 1
n− 1

)
qn

9
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=
∞

∑
n=2

(n− 1)(−1)n+1 − n + 1 + n(−1)n + n
n(n− 1)

qn

=
∞

∑
n=2

(−1)n+2 + 1
n(n− 1)

qn

The numerator is zero if n is odd and 2 if n is even.
Retaining the even terms and re-indexing gives

=
∞

∑
n=1

1
n(2n− 1)

q2n

Thus

JSk(x, y) =
p
2

∞

∑
n=1

1
n(2n− 1)2 ln 2

q2n

=

(
1

4 ln 2

)
pq2 +

(
1

24 ln 2

)
pq4

+

(
1

60 ln 2

)
pq6 +

(
1

112 ln 2

)
pq8

+

(
1

180 ln 2

)
pq10 + · · ·

≈0.361pq2 + 0.060pq4 + 0.024pq6

+ 0.013pq8 + 0.008pq10 + · · ·

Note the sum of the coefficients is 0.5 by Max 1 and
∑k pk = 2, where d = p for orthogonal x and y compo-
nents.

Note that the leading term of the JS series expansion
is the same as 4s, up to a small constant factor. JS is
an interesting mix of absolute and relative difference.
Consider pq2n = dq2n−1, so in contrast to pure relative
difference d/p, JS weights the relative difference more
if the absolute difference is large;

H2
s q-Series

Using the expansion
√

1 + r = ∑∞
n=0

(−1)n(2n)!
(1−2n)(n!)24n rn with

r = −q2 gives

QH = 1−
∞

∑
n=0

(−1)n(2n)!
(1− 2n)(n!)24n (−1)nq2n

=
∞

∑
n=1

(2n)!
(2n− 1)(n!)24n q2n

Therefore componentwise

H2
s =

p
2

∞

∑
n=1

(2n)!
(2n− 1)(n!)24n q2n

=

(
1
4

)
pq2 +

(
1

16

)
pq4 +

(
1
32

)
pq6

+

(
5

256

)
pq8 +

(
7

512

)
pq10 + · · ·

≈0.2500pq2 + 0.0625pq4 + 0.0312pq6

+ 0.0195pq8 + 0.0137pq10 + · · ·

Note the coefficients of the larger powers are bigger
than for the JS series, which is illustrated by the larger
curvature in Figure 6 right.

4s, JS and H2
s have similar behavior, but through dif-

ferent operations and of different order. 4s is a simple
ratio of powers, JS uses log2, and H2

s uses √ . If yk = 0,
then the kth component of 4s, JS, and H2

s are all equal
to xk/2. The contours (iso-value lines) for all three have
similar shape. See Figure 3.

Functions of u and z

Here we describe the Z functional forms for 4s, JS and
H2

s . We also introduce W(z) functions. Figure 9 illus-
trates various relationships between the Z-functions for
different distances.
Theorem 5 (Z-functions). Componentwise

4s =
u
2

Z4(z), JS =
u
2

ZJS(z) and H2
s =

u
2

ZH(z)

where

Z4(z) =
(1− z)2

1 + z
= 1 + z− 4z

1 + z

ZJS(z) = 1 + z− (1 + z) log2(1 + z) + z log2 z

ZH(z) = 1 + z− 2
√

z

and for convenience we list

Z′4 = 1− 4
(1 + z)2 =

(z + 3)(z− 1)
(1 + z)2

Z′JS = 1− log2(1 + z) + log2(z) = 1− log2(1 + z−1)

Z′H = 1− 1√
z

As for the Q functions, all of the above holds componentwise
and implies equality after taking 1-norms.

Proof. We use Z(z) = 2D(1, z) from Theorem 1.

10
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Fig. 9 Graphs of relationships between the Z functions.

For 4s we have 2 4s (1, z) = (1 − z)2/(1 + z) =(
(1 + z)2 − 4z

)
/(1 + z) = 1 + z − 4z/(1 + z). Also

Z′4 = (−2(1− z)(1 + z) − (1− z)2)/(1 + z)2 = (z2 +

2z− 3)/(z + 1)2 = (z + 3)(z− 1)/(z + 1)2.

2JS(1, z) = log2
2

1 + z
+ z log2

2z
1 + z

= (1 + z) log2
2

1 + z
+ z log2 z

= 1 + z− (1 + z) log2(1 + z) + z log2 z.

Also Z′JS = 1− (1 + z)/((1 + z)(log 2))− log2(1 + z) +

z/(z log 2) + log2 z = 1 − log2(1 + z) + log2(z) = 1 +

log2(z/(1 + z)) = 1− log2((1 + z)/z) = 1− log2(1 +

z−1).

For H2
s , we have 2H2

s (1, z) = (1−
√

z)2 = 1 + z− 2
√

z.
And Z′H is trivial.

The leading (u/2)(1 + z) = (x + y)/2 terms always
sum to 1 over all the components of mixture models,
so we have a concise expression of how much each of
these measures is less than 1.

11
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Corollary 6.

4s = 1− ‖u
2

W4(z)‖1 = 1− ‖u
2

4z
1 + z

‖1

JS = 1− ‖u
2

WJS(z)‖1

= 1− ‖u
2
(z log2 z− (1 + z) log2(1 + z))‖1

H2
s = 1− ‖u

2
WH(z)‖1 = 1− ‖u

2
(2
√

z)‖1

The leftmost equality is not componentwise equality. E.g.
H2

sk 6= 1/k− uk
√

zk in general.

Proof. In this proof we use subscripts k to emphasize
that keeping track of individual components is im-
portant. ‖ u

2 Z(z)‖1 = ∑K
k=1 |

uk
2 (1 + zk −W(zk))|. We

first note that 1 + zk ≥ W(zk) ≥ 0 so we can re-
move the absolute value sign. The argument for this
is that each component of the original distance func-
tions is non-negative (since the distance functions are
distances over all of RK

+ and not just mixture mod-
els) and equal to the Z functions. Each of the W are
non-negative. Thus we may drop the absolute val-
ues and separate the sum into two giving ‖ u

2 Z(z)‖1 =

∑K
k=1

uk
2 (1 + zk) − ∑K

k=1 W(zk). The first sum is 1 be-
cause it is merely ∑K

k=1 (uk + vk)/2 = ∑K
k=1 (xk + yk)/2

and our domain is mixture models.

4s, JS and H2
s via Series in z

Here we provide series expansions for our functions in
z, about the point z = 1. For each we define r = 1− z,
and each series contains integer powers of r starting
with 2. We make use of 1− r = z, 2− r = z + 1, and
1 ≥ r ≥ 0.

4s z-Series

Z4 =
(1− z)2

1 + z
= r2

(
1

2− r

)
=

r2

2

(
1

1− r/2

)

=
∞

∑
n=0

rn+2

2n+1 =
∞

∑
n=2

rn

2n−1 .

Thus

4s(x, y) =u
∞

∑
n=2

rn

2n

=

(
1
4

)
ur2 +

(
1
8

)
ur3 +

(
1

16

)
ur4

+

(
1

32

)
ur5 +

(
1
64

)
ur6 + · · ·

=0.25ur2 + 0.125ur3 + 0.0625ur4

+ 0.03125ur5 + 0.015625ur6 + · · ·

JS z-Series

JS z-series: ZJS has two log terms:

z log z = (1− r) log2(1− r) = −1− r
ln 2

∞

∑
n=1

rn

n
,

and

(1 + z) log(1 + z) = (2− r) log2(2− r)

=
(2− r)

ln 2
(ln 2 + ln(1− r/2))

= 2− r +
2− r
ln 2

ln(1− r/2),

where ln(1− r/2) = −
∞

∑
n=1

rn

n2n .

The 2− r in the second term cancels the leading 2− r
(i.e. 1 + z) in ZJS, yielding

ZJS =
2− r
ln 2

∞

∑
n=1

rn

n2n −
1− r
ln 2

∞

∑
n=1

rn

n

=
1

ln 2

∞

∑
n=1

(
rn

n2n−1 −
rn

n

)

+
1

ln 2

∞

∑
n=1

(
−rn+1

n2n +
rn+1

n

)
.

The first sum is zero for n = 1. Letting m = n + 1 in the
second sum we have

ZJS =
1

ln 2

∞

∑
n=2

rn

n

(
1

2n−1 − 1
)

+
1

ln 2

∞

∑
m=2

−rm

m− 1

(
1− 1

2m−1

)
=

1
ln 2

∞

∑
n=2

rn
(

1− 1
2n−1

)(
1

n− 1
− 1

n

)
.
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Thus

JS(x, y) =
u

2 ln 2

∞

∑
n=2

rn
(

1− 1
2n−1

)
1

n(n− 1)

=

(
1

8 ln 2

)
ur2 +

(
3

48 ln 2

)
ur3

+

(
7

192 ln 2

)
ur4 +

(
15

640 ln 2

)
ur5

+

(
31

1920 ln 2

)
ur6 + · · ·

≈0.1803ur2 + 0.0902ur3 + 0.0526ur4

+ 0.0338ur5 + 0.0233ur6 + · · ·

H2
s z-Series

ZH =1 + z− 2
√

z = 2− r− 2
√

1− r

=2− r− 2

(
1− r

2
+

∞

∑
n=2

rn

n!

n

∏
m=1

(m− 3/2)

)

=− 2
∞

∑
n=2

rn
n

∏
m=1

m− 3/2
m

.

Thus

H2
s (x, y) =− u

∞

∑
n=2

rn
n

∏
m=1

m− 3/2
m

=

(
1
8

)
ur2 +

(
1
16

)
ur3 +

(
5

128

)
ur4

+

(
7

256

)
ur5 +

(
63

3072

)
ur6 + · · ·

≈0.125ur2 + 0.0625ur3 + 0.0391ur4

+ 0.0273ur5 + 0.0205ur6 + · · ·

This converges slowly for r near 1, i.e. z near 0.

Z and Q Equivalence and Analysis

The different forms Z, Q, and W merely provide con-
venient alternatives for intuition, proofs, and perhaps
applications. The Z and Q functions are very similar
in form, as can be seen from the plots. Algebraically
they are related in the following way. Component-
wise equality with the original distance function means
p
2 Q(q) = u

2 Z(z). Since q = (1 − z)/(1 + z) and p =

u(1 + z), also z = (1− q)/(1 + q) and u = p(1 + q)/2,
we have the following theorem.
Theorem 7 (Z-Q-same).

Z(z) = (1 + z)Q
(

1− z
1 + z

)

Q(q) =
1 + q

2
Z

(
1− q
1 + q

)
Corollary 8. Z decreasing ⇒ Q increasing; also
Z decreasing ⇐ Q′(q) > 1

1+q Q(q) ≥ 0.

Proof. Z decreasing means ∀z1 < z2, Z(z1) > Z(z2).
Since Z(z) = (1 + z)Q((1− z)/(1 + z)) we have

Q
(

1− z1

1 + z1

)
>

1 + z2

1 + z1
Q
(

1− z2

1 + z2

)
> Q

(
1− z2

1 + z2

)
where q1 = 1−z1

1+z1
> 1−z2

1+z2
= q2. Since the mapping be-

tween z and q is a continuous isomorphism this inequal-
ity holds for arbitrary q1 > q2. For the other direction,
Z decreasing ⇐⇒ Q(q1) > 1+z2

1+z1
Q(q2) = 1+q1

1+q2
Q(q2).

We manipulate this inequality to get it into derivative
form,

Q(q1)−Q(q2)

q1 − q2
>

(
1 + q1

1 + q2
− 1

)
Q(q2)/(q1 − q2)

=

(
q1 − q2

1 + q2

)
Q(q2)/(q1 − q2) =

1
1 + q2

Q(q2).

This holds always if it holds in the limit as q1 → q2, or
Q′(q) > 1

1+q Q(q).

The stronger requirement for Q′ is necessary; e.g. Q =

1 + q/2 implies Z = (1 + z)(1 + (1− z)/(2(1 + z))) =

3/2 + z/2, so here is an example where both Q and Z
are increasing. Geometrically what is happening is that
a constant z (or q) ray from the origin first intersects
the p = 1 line, then the u = 1 line. Recall D is rising
linearly along this ray. For smaller values of q, the p
and u lines are farther apart, so D increases more. For
example, a flat Q(q) = 1 function implies an increasing
Z(z) = 1 + z function.

Theorem 7 and Corollary 8 hold generically for func-
tions with D(ax, ay) = aD(x, y). We now turn to
our particular functions, and show that the decreas-
ing/increasing conditions hold in the half-open inter-
val q ∈ (0, 1] (or z ∈ [0, 1) ), and they are flat at the
excluded end point, i.e. Q′(0) = 0 and Z′(1) = 0.
Theorem 9 (Z-decreasing). Z4(z), ZJS(z), and ZH(z) are
all strictly decreasing in [0, 1), with zero derivative at z = 1.
Note Z′4(0) = −3, but Z′JS(0) = −∞ and Z′H(0) = −∞.

Proof. We can check Z′ < 0 and the values at 0 and 1
directly from the formulas: Z′4 = (z+3)(z−1)

(1+z)2 , all factors

positive except z− 1; Z′JS = 1− log2(1 + z−1) < 0 ⇐⇒
2 < 1 + z−1; and Z′H = 1− z−1/2. All these check out
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for 0 ≤ z < 1.

Corollary 10 (Q-increasing). Q4(z), QJS(z), and QH(z)
are all strictly increasing in (0, 1], with zero derivative at
q = 0. Note Q′4(1) = 2, but Q′JS(1) = ∞ and Q′H(1) = ∞.

Proof. Increasing in (0, 1] follows from Corollary 8.
Derivative values at 0 and 1 can be checked using
Q′4 = 2q. 2Q′JS = log2(1 + q) − log2(1 − q), and

log2(1− q) < 0 for q > 0. Q′H = q/
√

1− q2.

For our three functions, a more complicated but
straight-forward alternative is to show Q is increas-
ing then check the stronger derivative conditions from
Corollary 8.
Theorem 11 (Q-increasing-alt). Q4(z), QJS(z), and
QH(z) are all strictly increasing in (0, 1], with zero deriva-
tive at q = 0. Note Q′4(1) = 2, but Q′JS(1) = ∞ and
Q′H(1) = ∞.

Proof. Positive derivatives follow directly from the for-
mulas. Q′4 = 2q. 2Q′JS = log2(1 + q)− log2(1− q)/2,

and log2(1− q) < 0 for q > 0. Q′H = q/
√

1− q2.

Corollary 12 (Z-decreasing-alt). Z4(z), ZJS(z), and
ZH(z) are all strictly decreasing in [0, 1), with zero deriva-
tive at z = 1. Note Z′4(0) = −3, but Z′JS(0) = −∞ and
Z′H(0) = −∞.

Proof. Relying on Theorem 11 we check the conditions
of Corollary 8. Recall Q4 = q2 and Q′4 = 2q. Then
Q′4 > Q4/(1 + q) ⇐⇒ 2q > q2/(1 + q) ⇐⇒
2q(1 + q) > q2 ⇐⇒ q 6= 0 and 2 > q. Re-
call QJS =

(
(1 + q) log2(1 + q) + (1− q) log2(1− q)

)
/2

and Q′JS = (log2(1 + q)− log2(1− q))/2. Then Q′JS >

QJS/(1 + q) ⇐⇒ log2(1 + q)− log2(1− q) > log2(1 +

q) + 1−q
1+q log2(1− q) ⇐⇒ 0 >

(
1−q
1+q + 1

)
log2(1− q).

The first factor is positive and the second is nega-
tive for q < 1. Recall QH(q) = 1 −

√
1− q2 and

Q′H = q/
√

1− q2. Then Q′H > QH/(1 + q) ⇐⇒ q(1 +
q) > (1−

√
1− q2)

√
1− q2 =

√
1− q2 − 1 + q2 ⇐⇒

1 + q >
√

1− q2, which is true for q > 0 since the left
side is increasing and the right is decreasing.

Values at 0 and 1 can be checked by recalling Z′4 =
(z+3)(z−1)

(z+1)2 , Z′JS = 1− log2(1+ z−1), and Z′H = 1− z−1/2.

Theorem 13. Z1
Z2

decreasing ⇐⇒ Q1
Q2

increasing. More-
over max Z1/Z2 = max Q1/Q2 and min Z1/Z2 =

min Q1/Q2.

Proof. Componentwise equality implies D1
D2

= Z1
Z2
(z) =

Q1
Q2

(
q = 1−z

1+z

)
and max and min are preserved at z = 0

and z = 1 (where q = 1 and q = 0).

We next describe some bounds limiting how much
these functions vary from one another. Then we
give some examples where these bounds are nearly
achieved.

Ratios of 4s, JS and H2
s

We start with describing linear bounds between the
functions. Tighter bounds apply in a variety of situa-
tions. Many of these linear bounds are already known.
For example the following lower bounds are stated in
Jain and Srivastava [12] without reference or proof. We
hope providing straightforward descriptions and sim-
ple proofs here are helpful. In addition, the parame-
terization of the ratios by q and z, their monotonicity
in these parameters, and geometrically describing their
curves appears novel. Table 1 summarizes the results of
this section.

Bounds on the ratio of Q (or Z) functions implies
bounds on the ratio of actual distance functions D. If
1 ≥ Q1/Q2 ≥ a componentwise, then 1 ≥ maxk

D1,k
D2,k
≥

‖D1‖1
‖D2‖1

≥ mink
D1,k
D2,k

= a.

Theorem 14 (Ratio bounds JS/4s, H2
s /4s, and

H2
s /JS).

1 ≥ H2
s
4s
≥ 0.5

1 ≥ JS
4s
≥ 1

2 log 2
, note 1/2 log 2 > 0.721

1 ≥ H2
s

JS
≥ log 2, note log 2 > 0.693

The maximum ratio of 1 is achieved exactly when x · y = 0,
and the minimum ratio is approached as x→ y.

Moreover ZH
Z4

(z), ZJS
Z4

(z) and ZH
ZJS

(z) are decreasing ⇐⇒
QH
Q4

(q), QJS
Q4

(q) and QH
QJS

(q) are increasing.

Proof. Recall componentwise D1
D2

(x, y) = Z1
Z2
(z) = Q1

Q2
(q)

so an upper or lower bound in the ratio of a component
bounds the ratio of the one-norms of all components.

JS/4s = 1/2 ln 2 + q2/12 ln 2 + q4/30 ln 2 + · · · . This
is obviously an increasing function of q, with value
1/2 log 2 at q = 0. At q = 1, recall the sum of the terms
is 1 by property Max 1 for JS. The same argument holds
for H2

s /4s = 1/2 + q2/8 + q416 + · · · .

14
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Table 1 Q∗ and Z∗ are the infimums of ratios of Q and Z, and q∗ and z∗ the limit points achieving them. These results are exact.

Q∗ q∗ Z∗ z∗

H2
s /4s 1/2 = .500 0 1/2 = .500 1

JS/4s 1/2 log 2 > .721 0 1/2 log 2 > .721 1
H2

s /JS log 2 > .693 0 log 2 > .693 1
max is 1 at q = 1 and z = 0

One can also prove limits on ZH/Z4 directly without
recourse to series. ZH/Z4 = (1 + z)(1 −

√
z)2/(1 −

z)2. Let w =
√

z and note (1 − w2) = (1 +

w)(1 − w). So ZH/Z4 = (1 + w2)(1 − w)2/(1 −
w2)2 = (1 + w2)/(1 + w)2 = f (w). And f ′(w) =(

2w(1 + w)2 − (1 + w2)2(1 + w)
)

/(1 + w)4 = 2(w −
1)/(1 + w)3. This is < 0 for w < 1.

For H2
s /JS, one might be tempted to consider the series

expansions as well, but proving monotonicity from the
two series is not so obvious.

It is easier to turn to the Z functions: R(z) = ZH/ZJS =

(1 + z− 2
√

z)
(1 + z− log2(1 + z)− z log2(1 + z−1))

.

We first evaluate R at its limits and then show it is de-
creasing.

We already know ZH(0) = ZJS(0) = 1 so R(0) = 1.

For R(1), switching to Q and using the series ex-
pansions, after factoring out pq2, the first terms give
QH
QJS

(0) = 1/2
1/2 ln 2 = ln 2. Some readers may find it in-

structive to consider that the leading q2 terms also in-
forms us of how many derivatives are required in a di-
rect argument: limz→1

ZH
ZJS

= 1+1−2
1+1−1−1 = 0

0 . Invoking

L’Hôpital’s rule we have limz→1
Z′H
Z′JS

= 1−z−1/2

1−log2(1+z−1)
=

0
0 . So invoking it again we get limz→1

Z′′H
Z′′JS

=
1
2 z−3/2

z−2

ln 2(1+z−1)

=

1/2
1/(2 ln 2) = ln 2.

We now show that R is decreasing through repeated
differentiation and checking values at z = 0 and 1 to
eventually show that all the derivatives have the correct
sign.

Using 1 + z−1 = (1 + z)/z we rewrite ZJS = 1 + z −
(1 + z) log2(1 + z) + z log2 z.

R′(z) = (1 − z−1/2)(1 + z − (1 + z) log2(1 + z) +
z log2 z)− (1+ z− 2z1/2)(1− log2(1+ z) + log2 z)/Z2

JS.
Ignoring the positive denominator, we expand and can-
cel 1 + z− (1 + z) log2(1 + z) terms to get sgn(R′(z)) =
sgn(R′1(z)), where R′1(z) = z log2 z − z−1/2 − z1/2 +

z−1/2(1 + z) log2(1 + z)− z1/2 log2 z− (1 + z) log2(z) +
2z1/2 − 2z1/2 log2(1 + z) + 2z1/2 log2 z. Combining like
log terms, and noting z1/2 − z−1/2 = z−1/2(z − 1) we
have sgn(R′(z)) = (z1/2 − 1) log2 z + z−1/2(z − 1)(1−
log2(1+ z)). We change variables with w =

√
z yielding

R′(w) = 2(w− 1) log2(w) + w−1(w2− 1)(1− log2(w
2 +

1). Since we already know R(w = 1) and R(w = 0) we
can restrict to w ∈ (0, 1). Since w2− 1 = (w+ 1)(w− 1),
multiplying by w/(w − 1) < 0 gives sgn(R′(w)) =

− sgn(R′2(w)) where R′2(w) = 2w log2(w)+ (w+ 1)(1−
log2(w

2 + 1)).

Our goal is now to show R′2(w) ≥ 0. Note R′2(0) =

0+ 0+ 1 = 1 and R′2(1) = −2+ 0+ 2 = 0. So it suffices
to show R′2 is monotonic, i.e. R′′2 ≤ 0.

R′′2 = (1 + 2/ log 2) − 2w(w + 1)/((1 + w2) log 2) +
log2(w

2/(1 + w2)) after simplification. Note R′′2 (w →
0) = −∞ and R′′2 (1) = 1 + 2/ log 2 − 4/2 log 2 +

log2(1/2) = 0. So it again suffices to show R′′2 is mono-
tonic, i.e. R′′′2 ≥ 0.

R′′′2 = 2(w2 − 2w − 1)/((1 + w2)2 log 2) + 2/(w(1 +

w2) log 2). Since we are only interested in the sign,
we drop the common positive 2/((1 + w2) log 2) factor
and simplify, sgn(R′′′2 ) = sgn(R′′′3 ) = (w3 − w2 − w +

1)/(w(1 + w2)). Dropping the new positive denomina-
tor we get sgn(R′′′2 ) = sgn(R′′′4 ) = w3 − w2 − w + 1 =

(1− w)(1− w2) ≥ 0, which was the goal. Going back
up the chain of derivatives shows that each is mono-
tonic and always has the correct sign.

Note that the relative difference bounds and curves in
Figure 9 and Figure 8 follows directly from the ratio
bounds.

Differences Between 4s, JS and H2
s

Recall from Section “Inter-Distance Properties” that
bounds on ratios implies bounds on differences, namely
1 ≥ d1/d2 ≥ c ⇒ (1− c) ≥ d2 − d1 ≥ 0. But here we
prove tighter bounds on differences for the Z and Q
functions. See Figure 8 and Figure 9. Table 2 summa-
rizes the results of this section.

Bounds on the difference in Q functions implies bounds
on the difference in actual distance functions D. Com-
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Table 2 Q∗ and Z∗ are the maximum difference between components of Q and Z functions, q∗ and z∗ are points near where this is achieved, and ”R
bound” is the weak bound on Q∗ and Z∗ implied by the ratio bounds. Except for the upper left, the results are not exact, but the actual maximum

difference is provably ≤ Q∗ (≤ Z∗).

Q∗ q∗ Z∗ z∗ R bound
F4 − FH 1/4 =

√
3/2 ≈ .270 .087 .5

.250 .866
F4 − FJS .110 .807 .122 .127 .279
FJS − FH .150 .912 .158 .055 .307

min is 0 at q = 0, q = 1, z = 0, and z = 1

ponentwise, given (Q1 − Q2) < a, then since the dif-
ference between distances is a linear scaling of differ-
ences in Q, we have that componentwise 0 ≤ D1−D2 ≤
p
2 (Q1−Q2) ≤ ap/2. Taking the 1-norm and noting that
for our functions componentwise D1−D2 ≥ 0, we have
0 ≤ ‖D1‖1 − ‖D2‖1 = ‖D1 − D2‖1 ≤ a‖p/2‖1 = a.

The same argument applies for Z. (The only difference
is b‖u/2‖1 ≤ b, not necessarily equality.) So whichever
constant is smaller provides a tighter bound. In our
case, the Q bound is always smaller, which is always
the case f-divergences. Geometrically, the bound is the
maximum difference in height for a constant q (or z) ray
from the origin traveling on two different D functions;
see Figure 7. For f-divergences these rays monotonically
and linearly spread vertically as they travel, and they
pass the p = 1 curve defining the Q functions before
they hit the u = 1 curve defining the Z functions.

Define MQ12 ≡ Q1 − Q2 and MZ12 ≡ Z1 − Z2. Ex-
cept in one case, we are unable to provide a closed
form solution to a bound for these M functions. In-
stead, we provide numeric proofs of the following form.
We show analytically that M′′ < 0 in an open inter-
val, and M′′ > 0 in the open complement of that in-
terval, with a single point at their shared boundary
where M′′ = 0. Hence there is a unique maximum in
the interval. We find a bound on that maximum nu-
merically. We find two points to either side of the max-
imum, and the ordinate of the intersection of their tan-
gent lines bounds the maximum Q∗ (Z∗). We compute
this maximum, accounting for possible round-off error,
and report it as a ”provable” maximum value. The ab-
scissa of the intersection point provides an approxima-
tion to the point q∗ (z∗) at which the true maximum oc-
curs. We try to get points close to q∗ through a binary
search. Although other search and bounding means are
undoubtedly more efficient, the functions are well be-
haved enough that this approach suffices.
Theorem 15. (Q4 − QH) ≤ 1/4, with equality at q =√

3/2.

Proof. MQ4H = q2 − 1 +
√

1− q2 =
√

1− q2(1 −√
1− q2). Let w =

√
1− q2, we have MQ4H =

w(1− w) and MQ′4H = 1− 2w. The maximum occurs

at w = 1/2 ⇐⇒ q =
√

3/2 and has value 1/4.

Lemma 16. (Q4 − QJS)
′′ < 0 for q ∈ (q0, 1) and > 0 for

q ∈ (0, q0) with q0 ≈ 0.53.

Proof. MQ′4J = 2q − (log2(1 + q) − log2(1 − q))/2.
MQ′′4J = 2− (1/(1 + q) + 1/(1− q))/(2 log 2). There-
fore MQ′′4J < 0 ⇐⇒ 4 log 2 < 1/(1+ q) + 1/(1− q) =
2/(1− q2) ⇐⇒ q > (1− 1/2 log 2)1/2 = q0 ≈ 0.53.

Lemma 17. (QJS − QH)
′′ < 0 for q ∈ (q0, 1) and > 0 for

q ∈ (0, q0) with q0 ≈ 0.72.

Proof. MQ′JH = (log2(1 + q) − log2(1 − q))/2 −
q/
√

1− q2. MQ′′JH = (1/(1 + q) + 1/(1 −
q))/(2 log 2) − (1 − q2)3/2 = (1 − q2)−1/ log 2 −
(1 − q2)3/2. Therefore MQ′′JH < 0 ⇐⇒

√
1− q2 <

log 2 ⇐⇒ q >
√

1− log2 2 = q0 ≈ 0.72.

Lemma 18. (Z4 − ZH)
′′ < 0 for z ∈ (0, z0) and > 0 for

z ∈ (z0, 1) with z0 ≈ 0.24.

Proof. MZ′4H = −4/(1+ z)2 + z−1/2. MZ′′4H = 8/(1+
z)3 − z−3/2/2. Therefore sgn(MZ′′4H) < 0 ⇐⇒
16z3/2 < (1 + z)3 ⇐⇒ 2 3

√
2
√

z < 1 + z. Letting
w =

√
z and solving via the quadratic formula we have

⇐⇒ w < 3
√

2−
√

3
√

4− 1⇐ z < 0.24.

Lemma 19. (Z4 − ZJS)
′′ < 0 for z ∈ (0, z0) and > 0 for

z ∈ (z0, 1) with z0 ≈ 0.31.

Proof. MZ4J ′ = −4/(1 + z)2 + log2(1 + z−1) and
MZ4J ′′ = 8/(1 + z)3 − 1/(z(z + 1) log 2). Therefore
MZ4J ′′ < 0 ⇐⇒ z2 + (2− 8 log 2)z + 1 > 0. Solv-
ing via the quadratic formula with b = (2− 8 log 2) we
have ⇐⇒ z < b/−

√
b2/4− 1 = z0 ≈ 0.31

Lemma 20. (ZJS − ZH)
′′ < 0 for z ∈ (0, z0) and > 0 for

z ∈ (z0, 1) with z0 ≈ 0.16.
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Proof. From Theorem 5 we have MZJH = (ZJS − ZH) =

− log2(1 + z)− z log2(1 + z−1) + 2
√

z and MZ′JH(z) =

− log2(1 + z−1) + z−1/2.

Log functions (base 2 and of 1 + z) can cross square-
root functions multiple times, so it is very helpful to
recourse to MZ′′JH to avoid these difficulties.

MZ′′JH = 1
z(1+z) log 2 −

1
2z3/2 . Note 1

z(1+z) log 2 −
1

2z3/2 >

0 ⇐⇒ 1
z(1+z) log 2 > 1

2z3/2 ⇐⇒ z(1 + z) log 2 <

2z3/2 ⇐⇒ (1 + z) log 2 < 2z1/2. Since z > 0, we
may square both sides, ⇐⇒ (1 + z)2 < 4

log2 2
z ⇐⇒

z2 + 2z − 4
log2 2

z + 1 < 0. Note sgn( f ′′) = sgn(−z2 +

2( 2
log2 2

− 1)z − 1). Using the quadratic formula the

zeros are 2c − 1 ± 2
√

c2 − c where c = 1/ ln2 2 =

{z0, z1} ≈ {0.162, 6.163}. Thus MZJH has a single in-
flection point in (0, 1) at z0. It is easy to verify numeri-
cally that MZ′′JH(z : z < z0) < 0 and MZ′′JH(z : 1 ≥ z >

z0) > 0.

Contours of 4s, JS and H2
s

Not Order Preserving Examples

Measures 4s, JS, H2
s (hence Hs) are not order preserv-

ing, yet their contours (constant-value sets) are similar.

Examples of order being switched can be generated
by exploiting the different curvatures in Figure 3 bot-
tom or the different coefficients in the series expan-
sions. For x = [0.89, 0.10, 0.01], y = [0.9, 0, 0.1],
and z = [0.65, 0.35, 0], we have (4s(x, y) = 0.087) <

(4s(x, z) = 0.093) but (JS(x, y) = 0.081) > (JS(x, z) =
0.072) and (H2

s (x, y) = 0.073) > (H2
s (x, z) = 0.052).

Changing z to [0.6, 0.4, 0], we have (JS(x, y) = 0.081) <
(JS(x, z) = 0.095) but (H2

s (x, y) = 0.073) > (H2
s (x, z) =

0.069).

Recall none of 4s, JS, or H2
s obey the triangle inequal-

ity.

Worst-Case Contour Construction

Here we demonstrate where these ratio bounds may be
nearly achieved. As before, equality is achieved when
all functions are 1, at x · y = 0.

The following construction nearly achieves the ex-
tremes of the inequality bounds for a single contour.
Let x = (a, a, ...a, b, b, ...b, 0) where a = 1/(k − 1) + ε

and b = 1/(k− 1)− ε. Let y = (b, b, ...b, a, a, ...a, 0) and
z = (x1, x2, ...xj, c, 0, 0, ...0, d) where j, c, and d are cho-
sen so that D1(x, y) = D1(x, z). Then as k → ∞ and
ε → 0 we have D2(x, y)/D1(x, y) → the least possible
and D2(x, z)/D1(x, z) → 1. Table 3 illustrates trends.

This example relies on several things; if any of these do
not hold, tighter bounds are possible. First, it relies on
the dimension k being large, and (second) the availabil-
ity of zero components in x. Third, it relies on xi ≈ yi

and hence (fourth) D1 being small.

However, one can get fairly close to this worst case
without being very extreme, as observed from the large
flat section of the z-ratio curves in Figure 9, as long as
we keep the availability of zero (or near-zero) compo-
nents to provide points where the ratio is near 1.

For example, keeping only the second condition, choos-
ing k = 5, ε = 0.08, gives x = (.33, .33, .17, .17, 0),
y = (.17, .17, .33, .33, 0), and z = (.33, .33, .042, .128).
Here 4s(x, y) = 4s(x, z) = .102 and JS(x, y) =

0.075, JS(x, z) = .094 and H2
s (x, y) = .053, H2

s (x, z) =

.085 so JS(x, y)/4s (x, y) = .73 ≈ 0.721, JS(x, z)/4s

(x, z) = .91 ≈ 1, H2
s (x, y)/4s (x, y) = .51 ≈ 0.5, and

H2
s (x, z)/4s (x, z) = .83 ≈ 1.

Changing z = (.33, .33, .17, .060, .110) gives JS(x, y) =

JS(x, z) = .075 and H2
s (x, y) = .053, H2

s (x, z) =

.069 so H2
s (x, y)/JS(x, y) = .70 ≈ 0.693, and

H2
s (x, z)/JS(x, z) = .92 ≈ 1. Table 3 describes some

other variations we have computed. The last three
columns describe extreme ratios between Hellinger-
squared and Jensen-Shannon, for the same point y
and a new point z′ equidistant from x under Jensen-
Shannon, z′ : JS(x, y) = JS(x, z′).

Conclusions

We hope that our organization of properties is illu-
minating for those using distance functions over mix-
ture models, and will inspire further geometric analy-
sis. The proofs are detailed so as to be easily repro-
ducible, which we thought would be useful given our
attempts to find them in the literature and the difficulty
of combining log and square-root functions and various
powers.

We have given an algebraic and geometric comparison
of the components of 4s, JS, and H2

s . We have factored
these functions into more easily comparable forms, in
the process illuminating their dependence and behavior
on features of the points. We have provided theoretical
bounds on componentwise ratios and differences, and
provided concrete examples that nearly achieve the ra-
tio bounds. However, much work remains.

We have provided linear bounds on ratios JS/4s, etc.,
but the functional forms suggest it is possible to derive
tighter nonlinear bounds. For example, the similarity
of contours 4s = c1 and JS = c2 might depend on c1
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Table 3 Near worst-case ratio constructions for contours.

k ε a b 4s
JS
4s

JS
4s

H2
s
4s

H2
s
4s

JS H2
s

JS
H2

s
JS

(x, y) (x, y) (x, z) (x, y) (x, z) (x, z′) (x, y) (x, z′)
∞ → 0 → 0 → 0 → 0 .721 1 .5 1 → 0 .693 1
5 .01 .26 .24 .00160 .7215 .998 .5002 .997 .00115 .6932 .9989
5 .08 .33 .17 .102 .73 .91 .51 .83 .075 .70 .92
5 .16 .41 .09 .41 .78 .95 .57 .91 .320 .72 .97
9 .08 .205 .045 .41 .78 .998 .57 .997 .320 .72 .957

and c2 and be closer together than the linear bounds
enforce. Our constructions show that getting close to
the worst case ratios is fairly easy if some components
are near zero. It would be interesting to explore worst-
case constructions where none of the components are
near-zero. We have not yet tried worst-case difference
constructions.

We wish to explore further the geometric properties
of the square root transformation in Hellinger. Us-
ing the same types of arguments for 4s, JS, and H2

s ,
we speculate that we could develop similar bounds
between Hellinger, Euclidean, and two Geodesic dis-
tances. Other bivariate distances such as the Jaccard
index and Tanimoto coefficient are worth analyzing.
We wish to explore these types of comparisons for
the multi-stage distances [21] and univariate distances
[16].
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Data Model and Application Context

One interesting source of mixture models is the analy-
sis of a corpus of text documents using statistical tech-
niques. For example, one might consider the corpus of
math and computer science papers from the last five
years, and be interested in seeing how well this paper
(the one you are reading now!) clusters with the ma-
chine learning literature, or whether it is an outlier as
the author suspects.

In order to answer such a question, one selects an ap-
propriate model (an art full of choices) and then uses
a mathematical computer program to turn documents
into data points in some space: Latent Dirichlet Alloca-
tion and Latent Semantic Analysis are common choices.
Next the points are clustered. (In some contexts the
output of LDA is considered clustered already by the
largest topic component.) But in order to cluster points
(i.e. documents), some notion of distance between points
is required.

However, which of the many distance functions should
you choose? Current practice is that the distance func-
tion is chosen by some combination of four criteria.
First, do you reproduce the ground truth? This is only
possible if ground truth is available and trustworthy.
E.g. you might consider the journal that a paper was
published in as the ground truth of what cluster it be-
longs in. Unfortunately this confounds the choice of
distance function with the choices of methods and other
parameters. Second, you consider the stability of the
outcome as in cross validation. Are similar clusterings
produced when some data are withheld, or the distance
threshold is varied, etc.? Third, you pick the distance
function that has been historically used for your appli-
cation domain. Despite the obvious shortcomings, this
facilitates evaluating new work, and leverages the in-
sight your application community has built up about
your distance function. Fourth, you pick the distance
function based on information theory, the idea that the
distance is measuring something relevant such as en-
tropy. This often coincides with historical application
practice. This paper ignores all of the above (very rea-
sonable) criteria, and instead considers complementary
and foundational first-principles geometric and alge-
braic comparisons.
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The computational geometry community has not his-
torically focused on statistical distances, except for im-
age analysis [21]. Even there, the study is usually based
on evaluating the outcome by the four criteria above.

Other Types of Distances

There are other distance types for collections of mixture
models that are outside the scope of this paper, but are
worth mentioning.

Point-to-point distances can be conflated with some
notion of distance (other than orthogonality) between
the coordinate axes or histogram bins, called “cross-
bin similarity.” This is natural in the setting of LDA,
where each coordinate represents a topic, and the top-
ics themselves reside as mixture model points in a high-
dimensional word space with meaningful distances be-
tween topics. The Earth Mover’s Distance has been
used in exactly this way for combining document simi-
larity with sub-topic similarity [23]. The Earth Mover’s
Distance [18] a.k.a. Mallows Distance [15] forms a cer-
tain product of these distances after solving a linear
program. The Quadratic form [9] is an alternative using
a different product, without the linear program. Rub-
ner et al. [20] compares nine distances, including some
cross-bin similarities, in the application context of im-
age comparisons.

Combining distances also arises in the setting where
each point represents a structured histogram, humans
have selected the bins, and the meaning of the bins of
the histogram are more or less related. For example, in
cybersecurity, one could build a histogram of features
of packet headers. One might want to assign the bin for
“day of the week” to have a smaller distance to the bin
for “time of day” than the bin for “packet size.”

Meilă Divergence [16] measures the similarity between
partitions based on entropy and mutual information.
That is, it is useful to compare the quality of differ-
ent clusterings, in contrast to whatever distance and
method was used to create the clusterings in the first
place.

Univariate measures (i.e. for single points) have their
uses as well. For example in community detection, an
entropy measure of a sub-graph may help one decide
whether it is a community or should be further subdi-
vided, and it may not matter how the entropy of two
disjoint subgraphs compare.

Model Generation
Recall the problem of determining the relationship of
this paper (document) to others in a corpus of jour-
nal papers (documents). A document is considered to
be composed of a collection of words: a bag of words,
where word order and grammar are ignored. Much art
is devoted to selecting the words to keep. For example,
one might throw away common words like “the.” One
might retain just the stem of words, obviously help-
ful for ignoring tense, but also emphasizing word roots
and meaning by treating “weighting,” “unweighted,”
and “weightier,” all as “weight.” The retained words
in the bag are then weighted to produce entries in a
document-word matrix C. Weighting is also an art, e.g.
weights equal to frequency of occurrence are not as dis-
tinguishing as weights equal to entropy of occurrence.
These approaches have proven very effective, despite
the obvious information loss.

Statistical Model, LDA

Fig. 10 LDA implied Bayesian hierarchical structure. Theta and Phi are

from Dirichlet distributions parameterized by multivariate alpha and

beta: θ ∼ Dir(α), φ ∼ Dir(β). The goal is to discover the unobserved

circled quantities from the observed ones. Figure courtesy of Robinson

[19].

Latent Dirichlet Allocation (LDA) takes this document-
word matrix C (corpus) and produces a topic-word ma-
trix φ (which we will ignore) and a document-topic
matrix θ (our data); see “Probabilistic Latent Seman-
tic Analysis” in Figure 11 and [19]. Each document-
column of θ is a mixture of topics, the contribution of
each topic to that document. The matrix product φθ

gives the probability distribution over the vocabulary.
This is in contrast to an approximation of the word
counts.

LDA assumes a hidden generative model. The topics
are hidden variables. The “true” underlying hidden
model for each document is assumed to be a sequence
of topics, of length equal to the number of words in that
document. Topics may be repeated in this sequence.
Each topic instance in the sequence randomly generated
one of its words and contributed it to the document;
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these words are the observed data [11]. (Despite the
document word order being ignored, the correlations
of the probability model recapture some word context.)
This gives a hierarchical Bayesian framework; see Fig-
ure 10. Further, the model assumes that θ and φ come
from a Dirichlet distribution, hence the name LDA.

Given this LDA model, a statistical computer program
is used to take the observed words and discover (esti-
mate) the hidden topics, both their presence in the doc-
uments θ and the probabilities with which they gener-
ated each word φ. Approximate inference methods for
LDA is an active area of research with a large litera-
ture. Gibbs sampling is a popular way to accomplish
the estimation process.

documents

w
or

ds

documents

w
or

ds

w
or

ds

to
pi

cs

topics

documents

w
or

ds

co
nc

ep
ts

concepts

documents

C

C

U
concepts

co
nc

ep
ts

D VT

φ θ

=Latent 
Semantic
Analysis

Probabilistic
Latent 

Semantic
Analysis

∼

Fig. 11 LDA (pLSA) and LSA derivations. Figure courtesy of Robinson

[19].

Algebraic Model, LSA

Other methods also produce geometrically similar out-
put. The linear algebra (non-statistical) technique La-
tent Semantic Analysis (LSA) [2] starts with similar
input, a corpus of documents. A document-by-word
(weighted) incidence matrix C (corpus) is formed as
before. A singular value decomposition (SVD) pro-
duces several matrices; see Figure 11. Here C is well-
approximated by the matrix products. For the word by
concept matrix, columns are orthogonal concept vec-
tors in word-space, with both positive and negative en-
tries; in contrast, the topics from LDA are not orthogo-

nal and have only non-negative entries. For the docu-
ment by concept matrix, each row is the (positive and
negative) coordinates of a document in concept-space.
Documents in topic-space are often compared using co-
sine similarity. This measures the angle at the origin
between points taken as vectors.

Other Approaches

LSA is only one of many different ways of deriving a
statistical model. Model selection is often the most im-
portant part of analyzing data. The effect of the dis-
tances used are secondary. Indeed, models can be an-
alyzed in many ways besides distances and clustering.
Ando [1] considers a general Bayesian framework for
modeling, beyond LSA. See Burnham and Anderson
[4] for an information-theoretic approach to selecting
a model, or rather multiple models, for analyzing em-
pirical data. Judge and Mittelhammer [13] considers
the problem of model selection and data analysis in
the context of econometrics, using families of likelihood
functionals for divergence measures. There are many
applications that are important enough to be consid-
ered fields unto themselves. Two categories are visual
and audio databases, where one could consider the web
as a massive distributed database. Here text keywords
and other abstracted clues are often unavailable or mis-
leading. For example, Schnitzer [22] considers indexing
and fast determination of music similarity.

Topology Beyond Clustering

Clustering is a zero-dimensional structure, and dis-
tances can also be used to produce more nuanced struc-
tures. Examples of higher dimensional discrete struc-
tures include building a graph: connect two vertices
with an edge if their distance is less than some thresh-
old. Also building a simplicial complex, adding a sim-
plex spanning points contained in a ball as in the Čech
complex. One can build a whole family of discrete
structures, filtered by an increasing distance threshold,
as in persistent homology [24] or alpha-complexes.
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